
Physics 566, Quantum Optics 
Problem Set #9 

Due: Friday Nov. 22, 2013 
 
Problem1:  The beam splitter and other linear transformations (25 points) 
Consider a symmetric beam splitter 
 
 

 
 
 
 
In the first weeks of lecture, we showed that the pair 
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where 

� 

t 2 + r 2 =1, 

� 

Arg(t) = Arg(r) ± π
2

, so that a possible transformation is, 

� 

Ea
(out ) = T Ea

(in ) + i 1−T Eb
(in ),  

� 

Eb
(out ) = T Eb

(in ) + i 1−T Ea
(in ), where 

� 

T = t 2 . 
 
Classically, if we inject a field only into one input port, leaving the other empty, the field 
in that mode will become attenuated,  e.g., 

� 

Ea
(out ) = T Ea

(in ) < Ea
( in ). 

 
(a)  Consider now the quantized theory for these two modes, 

� 

Ea ⇒ ˆ a , 

� 

Eb ⇒ ˆ b .  Suppose 
again that a field is injected only into the “a-port”.  Show that 
 

� 

ˆ a (out ) = T ˆ a (in )  is inconsistent with the quantum uncertainty. 
 
(b) In order to preserve the proper commutation relations we cannot ignore vacuum 
fluctuations entering the unused port.  Show that if the “in” and “out” creation operators 
are related by the scattering matrix, 
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(c) Suppose a single photon is injected into the a-port, so that the “in-state” is 

� 

ψ (in ) = 1 a ⊗ 0 b .   The “out-state” is 

� 

ψ (out ) = ˆ S ψ (in )  where 

� 

ˆ S  is the “scattering 

operator”, defined so that 

� 

ˆ S ̂  a (in )† ˆ S † = ˆ a (out )†and 

� 

ˆ S ̂  b (in )† ˆ S † = ˆ b (out )†  . 
 

Show that 

� 

ψ (out ) = t 1 a ⊗ 0 b + r 0 a ⊗ 1 b . 

 
(d) Suppose a coherent state is injected into the a-port 

� 

ψ (in ) = α a ⊗ 0 b . Which is the 
output,  

� 

ψ (out ) = tα a ⊗ rα b  or 

� 

ψ (out ) = r α a ⊗ 0 b + t 0 a ⊗ α b ?  Explain the 

difference between these. 
 
(e) A general linear optical system consisting, e.g., of beam-splitters, phase shifters, 
mirrors, etalons, etc. can be described by a unitary transformation on the modes 

 

� 

Ek
(out ) = uk ′ k E ′ k 

( in )

′ k 
∑ . 

In the quantum description the mode operators transform by the scattering transformation 

� 

ˆ a k
(out ) = ˆ S ̂  a k

(in ) ˆ S † = uk ′ k ˆ a ′ k 
(in )

′ k 
∑ , where 

� 

uk ′ k  is a unitary matrix. 

 
Show that if we start with a multimode coherent state 

� 

ψ (in ) = αk
( in ){ } , the output state is 

also a coherent state, 

� 

ψ (out ) = αk
(out ){ } , with 

� 

αk
(out ) = uk ′ k α ′ k 

( in )

′ k 
∑ . 

 
(f) The previous part highlights how linear transformations are essentially classical.  This 
was true for input with exactly one photon or for coherent states.  However, this is not 
true for more general inputs.  Suppose we send one photon into both ports, of a 50-50 
beam-splitter T=1/2, 

� 

ψ (in ) = 1 a ⊗ 1 b . Show that the output state is, 

 

� 

ψ (out ) =
1
2
2 a 0 b + 0 a 2 b( ). 

 
This says that the two photons both going to port-a or to port-b, but never one in port-a 
and one in port-b.  This is an effect of Bose-Einstein quantum statistics.  Explain in terms 
of destructive interference between indistinguishable processes. 



Problem 2:  Collapse a revival in the Jaynes-Cummings model (10 points) 
One of the foundational results wich demonstrated the quantum nature of the field was 
the study of Rabi oscillations of an atom in high-Q cavity (cavity QED). 
 
Suppose at the initial time the atom is in the ground state by the cavity is in a coherent 
state: Ψ(0) AF = g ⊗ α .  The joint atom-field state then evolves according to the 

Jaynes-Cummings Hamiltonian (we’ll neglect here any loss or dissipation). 
 
(a) Show that at a later time: 

Ψ(t) AF = c0 g ⊗ 0 + cn
n=1

∞

∑ e− inω0t cos ngt( ) g ⊗ n + isin ngt( ) e ⊗ n −1( )  
where 2g is the vacuum Rabi frequency and cn =

α ne−α
2 /2

n!
 , and thus show that the 

probability to be in the excited state at time t, irrespective of photon number, is 
 

Pe(t) =
nne−n

n!n=1

∞

∑ sin2 ngt( ) , where n = α 2  . 

 
(b) Numerically calculate and plot Pe  at a function of 0 ≤ gt ≤ 40  for n = 25 .  Your 
result should look as follows: 
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We see two distinctive features in this plot: 
 - The Rabi decay (collapse) after a few oscillations. 
 - After a long time they “revive” and the population starts oscillating again. 



(c) The collapse is easily understood because we effectively have “inhomogeneous 
broadening.”  That is, we have different Rabi frequencies associated with different 
numbers of photons, Ωn = n2g .  We saw this kind of decay of Rabi oscillations early in 
the semester, when we had a classical distribution of intensities.  The revival, by contrast, 
is a purely quantum effect of the field arising from the discrete frequency spectrum 
(Fourier sum). 
 
Show for large n , the expected (first) revival time, due to the discreteness of the photons 
is 

trevive ≈
2π n
g

 .  Compare with the plot in (b). 

 
Note: The classical limit is of Rabi flopping in free space is intrinsically a multi-mode 
problem, and will exhibit these collapse and revivals.   
 


